
WHY THE RULES ARE CHANGING FOR
LARGE DATA VISUALIZATION AND

ANALYSIS
Hank Childs

Lawrence Berkeley Lab & UC Davis 11/2/10

P. Navratil, TACC D. Pugmire, ORNL

Supercomputing 101

  Why simulation?
  Simulations are sometimes more cost effective than experiments.
 New model for science has three legs: theory, experiment, and

simulation.

  What is the “petascale” / “exascale”?
  1 FLOP = 1 FLoating point OPeration per second
  1 GigaFLOP = 1 billion FLOPs, 1 TeraFLOP = 1000 GigaFLOPs
  1 PetaFLOP = 1,000,000 GigaFLOPs, 1 ExaFLOP = billion billion FLOPs
  PetaFLOPs + petabytes on disk + petabytes of memory petascale
  ExaFLOPs + exabytes on disk + petabytes of memory exascale

  Why petascale / exascale?
 More compute cycles, more memory, etc, lead for faster and/or more

accurate simulations.

Petascale computing is here.

  Existing petascale machines

LANL RoadRunner ORNL Jaguar

Julich JUGene UTK Kraken

Supercomputing is not slowing down.

  Two ~20 PetaFLOP machines will be online in 2011

  Q: When does it stop?
  A: Exascale is being actively discussed right now

 http://www.exascale.org

LLNL Sequoia NCSA BlueWaters

Exascale machine: requirements

  Timeline: 2018-2021
  Total cost: <$200M
  Total power consumption: < 20MW
  Accelerators a certainty
  FLASH drives to stage data will change I/O

patterns (very important for vis!)

How does the petascale/exascale
affect visualization?

Large # of time steps

Large ensembles

Large scale

Large # of variables

Why is petascale/exascale
visualization going to change the rules?

  Michael Strayer (U.S. DoE Office of Science):
“petascale is not business as usual”
  Especially true for visualization and analysis!

  Large scale data creates two incredible challenges:
 scale and complexity

  Scale is not “business as usual”
 Supercomputing landscape is changing
 Solution: we will need “smart” techniques in production

environments
  More resolution leads to more and more complexity

 Will the “business as usual” techniques still suffice?

Outline

Production visualization tools use “pure
parallelism” to process data.

P0
P1

P3

P2

P8 P7P6
P5

P4

P9

Pieces of
data

(on disk)

Read Process Render

Processor 0

Read Process Render

Processor 1

Read Process Render

Processor 2

Parallelized visualization
data flow network

P0 P3P2

P5P4 P7P6

P9P8

P1

Parallel Simulation Code

Pure parallelism: pros and cons

  Pros:
 Easy to implement

  Cons:
 Requires large amount of primary memory
 Requires large I/O capabilities
  requires big machines

Pure parallelism performance is based
on # bytes to process and I/O rates.

  Amount of data to visualize
is typically O(total mem)

  Vis is almost always >50%
I/O and sometimes 98% I/O

FLOPs  Memory  I/O 

Today’s machine 

Tomorrow’s machine 

  Two big factors:
①  how much data you have to read
②  how fast you can read it

  Relative I/O (ratio of total memory and I/O) is key

Anedoctal evidence: relative I/O is
getting slower.

Machine name Main memory I/O rate

ASC purple 49.0TB 140GB/s 5.8min

BGL-init 32.0TB 24GB/s 22.2min

BGL-cur 69.0TB 30GB/s 38.3min

Sequoia ?? ?? >>40min

Time to write memory to disk 

Why is relative I/O getting slower?

  “I/O doesn’t pay the bills”
 And I/O is becoming a dominant cost in the overall

supercomputer procurement.

  Simulation codes aren’t as exposed.
 And will be less exposed with proposed future

architectures.

Recent runs of trillion cell data sets provide
further evidence that I/O dominates

13

●  Weak scaling study:
~62.5M cells/core

13

#cores Problem
Size

Type Machine

8K 0.5TZ AIX Purple
16K 1TZ Sun Linux Ranger

16K 1TZ Linux Juno
32K 2TZ Cray XT5 JaguarPF
64K 4TZ BG/P Dawn

16K, 32K 1TZ, 2TZ Cray XT4 Franklin
2T cells, 32K procs
on Jaguar

2T cells, 32K procs
on Franklin

- Approx I/O time: 2-5 minutes
- Approx processing time: 10 seconds

Pure parallelism is not well suited for
the petascale.

  Emerging problem:
 Pure parallelism emphasizes I/O and memory
 And: pure parallelism is the dominant processing

paradigm for production visualization software.

  Solution? … there are “smart techniques” that de-
emphasize memory and I/O.
 Data subsetting
 Multi-resolution
 Out of core
  In situ

Data subsetting eliminates pieces that
don’t contribute to the final picture.

P0
P1

P3

P2

P8 P7P6
P5

P4

P9

Pieces of
data

(on disk)

Read Process Render

Processor 0

Read Process Render

Processor 1

Read Process Render

Processor 2

Parallelized visualization
data flow network

P0 P3P2

P5P4 P7P6

P9P8

P1

Parallel Simulation Code

Data Subsetting: pros and cons

  Pros:
 Less data to process (less I/O, less memory)

  Cons:
 Extent of optimization is data dependent
 Only applicable to some algorithms

Multi-resolution techniques use coarse
representations then refine.

P0
P1

P3

P2

P8 P7P6
P5

P4

P9

Pieces of
data

(on disk)

Read Process Render

Processor 0

Read Process Render

Processor 1

Read Process Render

Processor 2

Parallelized visualization
data flow network

P0 P3P2

P5P4 P7P6

P9P8

P1

Parallel Simulation Code

P2

P4

Multi-resolution: pros and cons

  Pros
 Avoid I/O & memory requirements

  Cons
  Is it meaningful to process simplified version of the

data?

Out-of-core iterates pieces of data
through the pipeline one at a time.

P0
P1

P3

P2

P8 P7P6
P5

P4

P9

Pieces of
data

(on disk)

Read Process Render

Processor 0

Read Process Render

Processor 1

Read Process Render

Processor 2

Parallelized visualization
data flow network

P0 P3P2

P5P4 P7P6

P9P8

P1

Parallel Simulation Code

Out-of-core: pros and cons

  Pros:
 Lower requirement for primary memory
 Doesn’t require big machines

  Cons:
 Still paying large I/O costs

  (Slow!)

In situ processing does visualization as
part of the simulation.

P0
P1

P3

P2

P8 P7P6
P5

P4

P9

Pieces of
data

(on disk)

Read Process Render

Processor 0

Read Process Render

Processor 1

Read Process Render

Processor 2

P0 P3P2

P5P4 P7P6

P9P8

P1

Parallel Simulation Code

In situ processing does visualization as
part of the simulation.

P0
P1

P3

P2

P8 P7P6
P5

P4

P9

GetAccess
ToData Process Render

Processor 0

Parallelized visualization data flow network
Parallel Simulation Code

GetAccess
ToData Process Render

Processor 1

GetAccess
ToData Process Render

Processor 2

GetAccess
ToData Process Render

Processor 9

… … … …

In situ: pros and cons

  Pros:
 No I/O!
 Lots of compute power available

  Cons:
 Very memory constrained
 Many operations not possible

 Once the simulation has advanced, you cannot go back and
analyze it

 User must know what to look a priori
 Expensive resource to hold hostage!

Summary of Techniques and Strategies

  Pure parallelism can be used for anything, but it
takes a lot of resources

  Smart techniques can only be used situationally
  Strategy #1 (do nothing):

  Stick with pure parallelism and live with high machine
costs & I/O wait times

  Other strategies?
  Assumption:

  We can’t afford massive dedicated clusters for visualization
  We can fall back on the super computer, but only rarely

Now we know the tools … what
problem are we trying to solve?

  Three primary use cases:
 Exploration
 Confirmation
 Communication

Examples:
Scientific discovery
Debugging

Examples:
Data analysis
Images / movies
Comparison Examples:

Data analysis
Images / movies

Notional decision process

Need all
data at full
resolution?

No Multi-resolution
(debugging & scientific

discovery)

Yes

Do operations
require all the

data?

No

Data subsetting
(comparison &
data analysis)

Yes
Do you know

what you want
do a priori?

Yes

In Situ
(data analysis &
images / movies)

No

Do algorithms
require all

data in
memory?

No Interactivity
required?

No

Out-of-core
(Data analysis

& images /
movies)

Exploration

Confirmation

Communication

Pure parallelism
(Anything & esp.

comparison)

Yes Yes

Alternate strategy: smart techniques

All visualization and analysis work

Multi-res

In situ

Out-of-core
Do remaining
~5% on SC

Data subsetting

Difficult conversations in the future…

  Multi-resolution:
 Do you understand what a multi-resolution hierarchy

should look like for your data?
 Who do you trust to generate it?
 Are you comfortable with your I/O routines generating

these hierarchies while they write?
 How much overhead are you willing to tolerate on your

dumps? 33+%?
 Willing to accept that your visualizations are not the

“real” data?

Difficult conversations in the future…

  In situ:
 How much memory are you willing to give up for

visualization?
 Will you be angry if the vis algorithms crash?
 Do you know what you want to generate a priori?

 Can you re-run simulations if necessary?

How Supercomputing Trends Will
Changes the Rules For Vis & Analysis

  Future machines will not be well suited for pure
parallelism, because of its high I/O and memory
costs.

  We won’t be able to use pure parallelism alone any
more

  We will need algorithms to work in multiple
processing paradigms

